
Quest for Mathematics I (E2): Exercise sheet 2 solutions

1. (a)

∞
∑

n=1

1

4n2 − 1
= lim

N→∞

N
∑

n=1

1

4n2 − 1
=

1

2
lim

N→∞

N
∑

n=1

(

1

2n− 1
−

1

2n+ 1

)

=
1

2
lim

N→∞

(

1−
1

2N + 1

)

=
1

2
.

(b)
N
∑

n=1

1

n(n+ 2)
=

1

2

N
∑

n=1

(

1

n
−

1

n+ 2

)

=
1

2

(

1 +
1

2
−

1

N + 1
−

1

N + 2

)

→
3

4
.

Hence
∞
∑

n=1

1

n(n+ 2)
=

3

4
.

(c)
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2. (a) We have that
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for n > 2x − 1. Hence, the ratio test (comparison with a geometric series) tells us
the series converges.

(b) Similarly, we have that
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for all n, and so the ratio test tells us the series diverges.

(c) Note that, for N even,
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Similarly, for N odd,
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In particular,
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By the sandwich theorem,
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and so the series converges.
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3. (a) This is a geometric series with initial value x and ratio (1− x)2. Hence, if x = 0, all
the terms are zero, and so the sequence converges. Otherwise, the sequence converges
if and only if (1 − x)2 < 1, i.e. −1 < 1 − x < 1. Hence the interval I on which the
series converges is given by I = [0, 2).

(b) We have that

f(x) =

{

0 for x = 0,
1

2−x for x ∈ (0, 2).

(c) The function f is continuous on (0, 2), and has a right limit at x = 0 (but is not
right continuous there).

4. The function is not defined where x3 − x = 0, i.e. x ∈ {−1, 0, 1}. For x not in this set,

f(x) =
x3 − x2
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=
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x(x+ 1)(x − 1)
=

x
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.

Thus, if we set f(0) = 1, f(1) = 1
2 , the function will be continuous at these points. For

x = −1, f has an asymptote, and so no choice of f(−1) will make the function continuous
there.

5. The function is given by

f(x) =







1 for x = 0,
0 for 0 < |x| ≤ 1,
−1 for |x| > 1.

Points of discontinuity at −1, 0, 1. 0 is removable, ±1 are jump discontinuities.
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